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Abstract. Addition arithmetic design plays a crucial role in high per-
formance digital systems. The paper proposes a systematic method to
formalize and verify adders in a formal proof assistant Coq. The pro-
posed approach succeeds in formalizing the gate-level implementations
and verifying the functional correctness of the most important adders
of interest in industry, in a faithful, scalable and modularized way. The
methodology can be extended to other adder architectures as well.

1 Introduction

Demonstrating the functional correctness of an arithmetic implementation is a
challenge topic which has lasted for several decades. Testing and simulation, as
the traditional methods, have won good reputation and been employed exten-
sively in industry. When dealing with large scale designs, these methods may find
counterexamples, but could not assert if a design is correct because exhaustivity
is impractical.

As an alternative, formal methods have been increasingly adopted to vali-
date the arithmetic implementations. A main branch of formal methods is model
checking, which is recognised by its automation and succeeds in numerous in-
dustrial applications. However, the inherent state explosion problem prevents it
from scaling to large scale designs.

Another branch of verification is theorem proving, which is no longer re-
stricted by the scale as model checking, testing and simulation, but supposed
intricate to carry out because it requires strong logic backgrounds and heavy
user interactions. Nevertheless, there appear quite a few successful applications
by different theorem provers. By Boyer-Moore, a microprocessor is verified in [1],
and a N-bit comparator as well as mean-value circuits are verified in [2]. By HOL,
a ripple carry adder and a sequential device are verified in [3], and an ATM switch
fabric is verified in [4]. By Coq, a sequential multiplier is verified in [5], and an
asynchronous transfer mode switch fabric is verified in [6].



The main effort of this work is to propose a holistic methodology to formalize
and verify adders in Coq [7]. Adders are chosen because they are the most fun-
damental arithmetic units widely employed in various advanced digital systems,
such as IBM POWER6, whose correctness depends significantly on the correct-
ness of its addition sub-components. This methodology provides an uniform way
to formalize and verify various implementations of arithmetic addition, and it
is applied in this work to formalize and verify primary and high speed adders
of interest in industry, including Carry Look-ahead Adder (CLA), Ling Adder
(LA) and Parallel Prefix Adder (PPA).

Benefiting from the techniques of Coq, the methodology shares the following
decent features.

– Scalability : The formalization of an adder is parameterized by a natural
number (named length) and the correctness proof applies to any length.

– Modularization : Various verified adders are encapsulated as instances of
an abstract module, which provides an uniform way to be reused in ad-
vanced arithmetic units. The formalization and verification of an advanced
arithmetic unit can be accumulated from verified units ignoring the their
detailed implementations.

– Fidelity : The adders are formalized by (recursive) functions, which have
clear correspondences to the gate-level implementations of circuits. The ad-
dends and sum of an adder are formalized as vectors, which is a faithful
model of arrays and provides meanwhile additional type checking ability to
avoid potential misusing of inputs.

The rest of paper is organized as follows. Related works are introduced in
Section 2. According to our knowledge, we verify not only most adders appearing
in the literature, but also some for the first time by theorem proving. Section 3
explains our methodology in details by the example of ripple carry adder. Pre-
liminaries are also introduced according to our needs. Some definitions and most
proofs will not be presented in this paper, but they are available on the author’s
web page4. Sections 4 and 5 are devoted to LA and PPA, respectively.

2 Related Work

Compared to their extensive applications, the verification of primary adders
by theorem proving are not at the fingertips. In particular, the formalization
and verification of the Ling adder, cannot be found in any literature. [8] proves
the correctness of RCA by formalizing adders with dependent types in Coq.
[9] proves the correctness of RCA by the higher order logic with a reusable
library for formalizing circuits. [2] verifies RCA written in VHDL as well as other
circuits by the higher order logic. [10] develops semi-formal correctness proof of
CLA or PPA. [11] shows a pencil-and-paper proof of the general prefix adders,
as well as the proof of related RCA. Furthermore, [12] formalizes and verifies

4 https://github.com/superwalter/VeriAdder/tree/master/V2



these adders in Coq. By rewriting and induction, [13] provides the verification
of PPA using powerlists. An algebra formalization of PPA and its correctness
proof are presented in [14]. Besides applying it to formalize and verify most
primary adders, our methodology also provides good features, which only appear
partially in other literatures, but are never integrated together in any preview
work, according to our knowledge.

3 A Holistic Methodology

Various kinds of adders are designed to provide relatively good performances for
different circumstances, while they implement the same addition functionality. A
holistic methodology is proposed in this work in order to capture all the different
adders and provide desired good features.

3.1 An Unified Proof Structure

Basically, the methodology answers four questions:

– how to formalize the related data types,
– which method is used to formalize an adder,
– what should be proved, and
– how to organize formalizations and verifications for different adders.

These questions are answered by an uniform specification, utilizing the mod-
ule system of Coq.

1 Definition mbadder (n : nat) :=
2 data (S n)−> data (S n)−> bit−> hyb (S n).
3 Definition mbadder_c n (f : mbadder n) :=
4 forall (X Y : data (S n)) c,
5 |[X]| + |[Y]| + |c| = |(f X Y c)|.
6 Module Type GenAdder.
7 Parameter adder : forall n, mbadder n.
8 Axiom adder_correct : forall (n : nat),
9 mbadder_correct (@adder n).

10 End GenAdder.

Lines 1 and 2 answer the first two questions. n, in line 1, is a parameter
(name length) indicating the inherent nature of an adder: how many bits can
it process. The input carry-in and output carry-out are formalized by Booleans
(bit). The input addends and the returned sum are formalized by vectors of
Booleans (datam), which are dependent types depending on the lengthm. hybm
is another dependent type standing for a tuple of a bit and a m-bit vector,
which is used in line 2 for combining the carry-out and the sum. Thus, an adder
is formalized as a function, taking two addends and a carry-in as inputs and
returning a tuple of carry-out and sum. This function is normally recursively
defined as shown later.



Lines 3, 4 and 5 answer the third question. The correctness of an adder
is ensured by proving that the natural number denotations of the inputs and
output are equivalent. In line 5, |b| is the natural number denotation of a bit
b. |[v]| and |(t)| are natural number denotations of the vector v and the result
tuple t. Big endian is chosen to implement these two functions.

Lines 6-10 answer the last question. An general adder is formalized as an
abstract module. The specification is assigned and the correctness is required. A
verified adder should be its instance, like a Ripple Carry Adder (RCA).

3.2 An Example explaining the methodology

Carry Look-ahead Adder (CLA) improves RCA by computing all the carries
in advance in order the reduce the significant delay. This is represented, in the
formalization, by extending the general module with abstract functions P , G
and carries which are supposed to compute all the propagated carries, generated
carries and carries respectively according to the inputs.

1 Module Type LookAheadAdder <: GenAdder.
2 Parameter P : forall n, data n −> data n −> data n.
3 Parameter G : forall n, data n −> data n −> data n.
4 Parameter carries n : data (S n) −> data (S n) −> bit −> hyb (S n).
5 Parameter adder : forall n, mbadder n.
6 Parameter adder_correct : forall n, mbadder_correct (@adder n).
7 End LookAheadAdder.

<: symbol in line 1 stands for this module should be an instance of the general
verified adder. RCA is formalized according to the following equations.

ci+1 = (xi ∧ yi) ∨ ((xi ⊕ yi) ∧ ci) = gi ∨ (pi ∧ ci) (1)

si = xi ⊕ yi ⊕ ci = pi ⊕ ci (2)

Carry to each bit ci+1 in CLA is computed by iteratively unfolding ci in
Equation 1 until c0 which is overall input bit as shown by the following example.

c3 = g2 ∨ (p2 ∧ c2)

= g2 ∨ (p2 ∧ (g1 ∨ (p1 ∧ c1)))

= g2 ∨ (p2 ∧ g1) ∨ (p2 ∧ p1 ∧ c1)

= g2 ∨ (p2 ∧ g1) ∨ (p2 ∧ p1 ∧ (g0 ∨ (p0 ∧ c0)))

= g2 ∨ (p2 ∧ g1) ∨ (p2 ∧ p1 ∧ g0) ∨ (p2 ∧ p1 ∧ p0 ∧ c0)

This process as well as definitions of P , G are formalized as:

1 Definition P n (X Y : data n) := X
⊕

Y.
2 Definition G n (X Y : data n) := X

∧
Y.

3 Definition carries n (X Y : data (S n)) (cin : bit) : hyb (S n).
4 induction n as [|n rec].
5 + exact (bandor (Y �) (X �) cin, [cin]).



6 + set (recs := rec (X �) (Y �)).
7 exact (bandor (Y �) (X �) (recs1), (recs1)1(recs2)).
8 Defined.⊕

,
∧

in line 1, 2 and
∨

used later are extensions of logical boolean operations
⊕, ∧ and ∨, iterating these operations on the elements at the same position of
the two vectors. + symbols in lines 5 and 6 stand for the start of the two branches
of the recursion where n = 0 or n = m+1. The � operators in line 5 returns the
leftmost element of a vector. Correspondingly, the � operator in line 6 returns
the rightmost n elements of a (n+ 1)-bit vector. [b] is a vector with a single bit
b. p1 and p2 represent the first and second objects of a tuple respectively. The
1 operator in line 9 joins a bit and a n-bit vector to form a (n+ 1)-bit vector.

The adder is defined as follows and its correctness is proved by induction on
the length and reusing the correctness result of the full adder.

1 Definition adder : forall n, mbadder n.
2 intros n X Y cin.
3 set (cc := carries (P X Y) (G X Y) cin).
4 exact (cc1, (P X Y)

⊕
(cc2)).

5 Defined.
6 Theorem adder_correct : forall n, mbadder_correct (@adder n).
7 Proof. induction n as [|n rec]. . . . Qed.

3.3 Features Provided by the Methodology

There are several benefits to use this methodology for the verification of adders.

Scalability. The formalization and verification of an adder is scalable to any
data-width, because the parameterized length can be specified to arbitrary nat-
ural number. A 4-bit RCA can be obtained by:

1 Definition CLA4 := CLA 3.
2 Corollary CLA4_correct : forall (X Y : data 4) c,
3 |[X]| + |[Y]| + |c| = |(RCA4 X Y c)|.
4 Proof. intros; apply CLA_correct. Qed.

Notice that, a 4-bit CLA is CLA 3, because we require that the addends of
the adders have at least one bit. The correctness proof of a CLA with a specified
length follows straightforwardly from the proof of CLA with arbitrary length.

Modularization. Some high speed adders divide the input addends into dif-
ferent groups. Each group is calculated by a Carry Selected Adder (CSA) inde-
pendently, and different groups will be concatenated together in order. Since the
computation of CSA depends on the input carry in very late steps, such designs



would have less propagated time, thus high performance. We formalize an ab-
stract architecture for this kind of design, which illustrates the modularization
of our method and may also contribute to verify complex adders in the future.

CSA takes an abstract verified adder as parameter, and is also an instance
of the general verified adder.

1 Module CSA (M : GenAdder) <: GenAdder.
2 Definition adder n : mbadder n.
3 intros X Y c.
4 set (a1 := M.adder X Y true).
5 set (a0 := M.adder X Y false).
6 set (sum := (dmap (band c) a12)

∨
(dmap (band (¬c)) a02)).

7 set (c’ := (a11 ∧ c) ∨ (a01 ∧ (¬c))).
8 exact (c’, sum).
9 Defined.

10 Theorem adder_c : forall n, badder_correct (@adder n).
11 Proof. . . . rewrite M.adder_c. . . . Qed.
12 End CSA.
13 Module CSA_CLA := CSA CLA.

Line 2 to 10 define CSA. Two adders compute the sum and the carry-out with
respect to carry-in true and false in line 4 and 5 respectively. The multiplexer
chooses the real sum and carry-out according to the actual carry-in in line 6
and 7, which is the first time input carry is needed. dmap in line 6 applies a
function to each element of a vector. The correctness of CSA holds because the
addition unites are correct, thus CSA is an instance of the general adder. The
parameterized module can be instantiated by any verified adders. Line 13 defines
a CSA whose addition unites are specified to CLA.

1 Module Type GroupAdder (M : GenAdder) <: GenAdder.
2 Parameter part : list nat.
3 Fixpoint adder_rec (n lens len : nat) : (mbadder lens).
4 destruct n.
5 + exact (@M.adder lens).
6 + specialize adder_rec with (1:=n)
7 (lens := pred (cur_index_abr n len)) (2:=len).
8 ...
9 exact (cast_comb (combination

10 (@M.adder (lens − (cur_index_abr n len)))
11 (adder_rec)) (aux _ _ Hc3 Hc2)).
12 Defined.
13 Definition adder n := adder_rec (sect n) n n .
14 Lemma adder_correct : forall n, mbadder_correct (adder n).
15 Proof. ... Qed.
16 End GroupAdder.

The formalization and verification of this adder is quite complex due to the
problem with the dependent types as described in [15] and [16], therefore the
unimportant details are omitted. The part in line 2 is a partition of the addends.



This partition should be valid, which means the elements preserve strict order
and do not exceed the total data-width. Lines 3 to 12 define the adder recur-
sively by combining an adder with another which is combination of rest groups
of adders obtained by recursion. combination in line 9 execute the combining
operation. cast comb in line 9 converts an adder with length m to an adder
with length n taking the proof of m = n as a argument. The initial values of
this recursive function is specified in line 13. The correctness can be proved by
the induction on the length of the partition and using the correctness result of
combining correct adders.

The parameterized module can be instantiated by any verified adder. If it is
instantiated by CSA, it is a verification of many popular high speed adders.

Fidelity. There are normally two ways to formalize the addends and sum of
an adder in Coq, either by dependent type vector as in [6] [8] and this work,
or non-dependent type list as in [12]. Both [6] and [8] have explanations why
dependent type is more proper for the verification of adders. Generally speak-
ing, non-dependent list is more proper for formalizing linked list, whose length
can be obtained by computation, while dependent vector is more proper for
formalizing array, whose length is inherent natural. The functionality of adders
are formalized by interactively defined (recursive) functions which have clear
correspondences to gate-level description of circuits.

4 Ling Adder

The Ling Adder (LA) was proposed by [17]. Instead of computing in advance
all the carries as CLA, LA computes all the pseudo carries, the propagation
of which have less fan-ins and fan-outs. With the proper grouping of the input
addends, LA needs less levels of gates, and consequently has better performance.

Similar to the propagated and generated carries, LA has new complementing
signal ki and previous stage propagate Ti, which are defined in Equations 3 and 4
respectively as follows.

ki = ai ∧ bi (3)

Ti = ai ∨ bi (4)

The pseudo carries are defined recursively. According to our knowledge, [17]
and other materials about LA define the pseudo carries without considering the
case i = 0 as this paper does in Equation 5b.

Hi =

{
ki ∨ (Hi−1 ∧ Ti−1) i > 0 (5a)

ki ∨ cin i = 0 (5b)

Without this case, the default value of H−1 and T−1 are both false, and
it is equivalent to our definition assuming cin is always false. More intuitively,
that algorithm does not consider the carry-in to the least significant bit, which



restricts it only suitable for some industrial uses, such as the addition of two
registers. We generalize it to provide general functionality of an adder. Sum is
defined similarly to consider the carry-in to the least significant bit as follows.

si =

{
(Hi ⊕ Ti) ∨ (ki ∧Hi−1 ∧ Ti−1) i > 0 (6a)

(Hi ⊕ Ti) ∨ (ki ∧ cin) i = 0 (6b)

The abstract module of Ling extends the general one by adding signatures
of k, T and H.

1 Module Type LingAdder <: GenAdder.
2 Parameter K : forall n, data n −> data n −> data n.
3 Parameter T : forall n, data n −> data n −> data n.
4 Parameter H : forall n, data (S n)−> data (S n)−> bit−> data (S n).
5 Parameter adder : forall n, mbadder n.
6 Parameter adder_correct : forall n, mbadder_correct (@adder n).
7 End LingAdder.

To compute the ith pseudo carry of H, the ith bit of K and the (i−1)th bit of
T is needed. Therefore, the two parameters of H stands for vectors K and a left
shift of T . The formalization of H assuming the correctness of the parameters
is as follows.

1 Definition H n (X Y : data (S n)) : data (S n).
2 induction n as [|n rec].
3 + exact ([(X �) ∨ (Y �)]).
4 + set (recs := rec (X �) (Y �)).
5 exact ((X �) ∨ ((Y �) ∧ (recs �)) 1 recs).
6 Defined.

H is defined recursively. Line 3 deals with the case i = 0. Lines 4 and 5 deal
with the recursive case. recs is the last n bits of H by recursion, and recs �

stands for Hn−1.
LA is defined according to Equation 6a and 6b using the definition of H.

1 Definition adder n

2 (X Y : data (S n)) (cin : bit) : hyb (S n).
3 set (KXY := K X Y).
4 set (TXY := T X Y).
5 set (Tshft := shiftin cin TXY).
6 set (Hc := H KXY (Tshft �)).
7 set (Hcshft := shiftin true pc).
8 set (sum := (TXY

⊕
Hc)

∨
(KXY

∧
(Hcshft �)

∧
(Tshft �))).

9 exact ((TXY �) ∧ (Hc �), sum).
10 Defined.

Since the ith bit of sum depends on the (i − 1)th bit of H and T , they
are shifted in line 5 and 7. The reason why cin is shifted into T is explained
above, true is shifted into H to ensure T−1 ∧ H−1 = cin where H−1 and T−1



are the bits to be shifted in respectively and T−1 = cin. The carry-out of LA is
(TXY �) ∧ (Hc �) which is equivalent to cout as shown in Equation 7.

ci = Hi−1 ∧ Ti−1, i ≥ 0 (7)

The formalization of Equation 7 is complicated, but the proof is trivial by
induction and case analysis. The correctness of LA follows by proving an lemma
stating that the outputs of CLA and LA are the same with regards to arbitrary
same inputs. This lemma is proved by induction with the result of Equation 7.

1 Lemma LA_CLA_eq : forall n (X Y : data (S n)) c_in,
2 LAdder.adder X Y c_in = CLAdder.adder X Y c_in.
3 Proof. induction n as [|n rec]. . . . Qed.
4 Theorem adder_correct : forall n (X Y : data (S n)) c,
5 |[X]| + |[Y]| + |c| = |(LAdder.adder X Y c)|.
6 Proof. intros; rewrite LA_CLA_eq. apply CLAdder.adder_correct. Qed.

[18] proposed an extension of Ling’s adder by the following equations,

Dj:k = Gj:k + Pj:k = Gj:k+1 + Pj:k (8)

Bj:k = gj + g + j − 1 + ...+ gk (9)

Gj:i = Dj:k ∧ (Bj:k +Gk−1:i) (10)

where Gi:j and Pi:j are group propagated and generated carries which are defined
later in the Section 5. Equation 10 is also proved in this work.

5 Parallel Prefix Adder

CLA improves RCA by computing all the carries in advance as shown in Equa-
tion 3. However, large fan-in and fan-out will be caused if all the carries ci are
computed this way especially when i is large. Parallel prefix adder (PPA) avoids
this by divide-and-conquer the bits of input addends, which provides an efficient
way to compute all the carries parallel. Basic definitions are as follow.

ci+1 = Gi:j ∨ (Pi:j ∧ cj) (j ≤ i) (11)

si = ci ⊕ Pi (12)

Pi:j =

{
Pi i = j
Pi ∧ Pi−1:j i > j

(13)

Gi:j =

{
Gi i = j
Gi ∨ (Pi ∧Gi−1:j) i > j

(14)

Due to the similarity of the Equation 13 and 14, only the formalization of
Equation 14 is shown as follows. An auxiliary function, defined recursively on
the difference of i and j, is reluctantly introduced to define it in Coq.



1 Definition GpG_rec n (gp gg: data (S n)) (d i : nat) : bit.
2 revert i; induction d as [|d rec]; intros i.
3 + exact (nth (n−i) gg).
4 + exact ((nth (n−i) gg) ∨ ((nth (n−i) gp) ∧ (rec (pred i)))).
5 Defined.
6 Definition GpG n (X Y : data (S n)) i j :=
7 GpG_rec X Y (i−j) i.

In line 1, the parameters gp and gg stand for the propagated and generated
carry vectors. Another parameter d is the difference of i and j. Function nth k v
returns the kth element of v from leftmost bit indexed 0. pred n is a function
returns n− 1.

To compute all the carries parallel in advance, the carry ci+1 should not
depend on any ck where i ≥ k > 0, except c0 which is the overall carry-in.
Therefore, carries of PPA are computed according to a variation of Equation 11
as follows.

ci+1 = Gi:0 ∨ (Pi:0 ∧ c0) (15)

and different PPAs employ different parallel prefix methods to compute the
group carries Gi:0 and Pi:0 for all n ≥ i ≥ 0 for the sake of high performance.
To capture various PPAs in an uniform framework, an abstract module, which
abstractly describes this method as groups, is employed as follows.

1 Module Type GroupCarries.
2 Parameter groups : forall n, data2 (S n) −> data2 (S n).
3 Axiom groups_correct : forall n (X Y : data (S n)),
4 groups (P X Y, G X Y) = correct_groups (P X Y, G X Y).
5 End GroupCarries.

data2 n, in line 3, is the dependent type of a tuple of vectors whose length are
both n. Therefore, the parameter of groups stands for vectors of propagated and
generated carries as shown in line 6. groups correct in line 4 is the assumption
that the groups function is correct. The correctness is represented as an exten-
sional equality of another correct function and itself. In line 7, correct groups
is the correct function to compute the groups carries according to Equations 13
and 14. Its correctness holds by first computing all the carries correct carries
according to this function, and then proving correct carries are equivalent to
the carries of CLA.

1 Definition correct_carries (n : nat) (c_in : bool)
2 (X Y : data (S n)) : hyb (S n).
3 set (PXY := P X Y).
4 set (GXY := G X Y).
5 set (bvGp := correct_groups (PXY, GXY)).
6 set (all_c := shift_map c_in bvGp).
7 exact (all_c �, all_c �).
8 Defined.
9 Lemma carries_correct : forall n (X Y : data (S n)) c_in,



10 correct_carries c_in X Y = CLAdder.carries (P X Y) (G X Y) c_in.

shift map, in line 2, is a compositional operation first iterating Equation 15
on all the Gi:0 and Pi:0 which are stored in the vectors of the first and pro-
jection of bvGp, and then shifting the overall carry-in c0 to get all the carries.
Consider that the computation of Gi:j depends on the subgroups of the group
propagated carries Pi:m, the fundamental carry operator ’◦’ as in [19] is used to
compute the group propagated and generated carries simultaneously in function
correct groups and should be used in all implementations of function groups.

(P,G) ◦ (P ′, G′) = (P ∧ P ′, G ∨ (P ∧G′)) (16)

Function correct groups can be taken as an instance of groups function,
and is only one particular implementation of groups, which is verified. There
are many other implementations of the groups function based on the follow-
ing lemmas which are proved by induction on the difference of i and m, using
Equation 13 and 14.

Pi:j = Pi:m ∧ Pm−1:j (j < m ≤ i) (17)

Gi:j = Gi:m ∨ (Pi:m ∧Gm−1:j) (j < m ≤ i) (18)

Equation 17 and 18 can be rewritten using ◦ operator in one equation. For
all j < m ≤ i,

(Pi:j , Gi:j) = (Pi:m, Pm−1:j) ◦ (Gi:m, Gm−1:j) (19)

Equation 19 shows clearly that any group of group carries can be computed by
its concatenation (or even overlapped) subgroups. And the proper dividing and
conquering of the bits of input addends can implement groups function with high
performance. PPA is such a family of adders differing only in the computation
of the groups function, thus a general PPA can be formalized parameterized by
module GroupCarries.

1 Module PPAdder (Import M : GroupCarries) <: GenAdder.
2 Definition adder n (X Y : data (S n)) (c_in : bit) : (hyb (S n)).
3 set (GT0 := groups ((P X Y), (G X Y)).
4 set (all_carries := shift_map c_in (GT01) (GT02)).
5 set (sum := PC

⊕
(all_carries �)).

6 exact (all_carries �, sum).
7 Defined.
8 Theorem adder_correct : forall n (X Y : data (S n)) c_in,
9 |[X]| + |[Y]| + |c_in| = |(adder X Y c_in)|.

10 Proof.
11 intros n X Y c_in; unfold adder.
12 rewrite CLAdder.adder_correct.
13 unfold CLAdder.adder.
14 rewrite <− carries_correct.
15 unfold correct_carries.



16 rewrite groups_correct; trivial.
17 Qed.
18 End PPAdder.

Line 5, uses the abstract function groups from the parameterized module
GroupCarries to compute all the group carries in advance. shift map function
in line 7 implements the operation in Equation 15. line 6 and 8 compute all the
carries and the sum.

The correctness of a PPA is proved based on the assumption groups correct
in the abstract parameterized module GroupCarries. Line 15 reformats the left
part of the equation to the result of what CLA computes. Line 17 uses the result
that the carries of CLA are identical to the carries computed by Equation 13,
14 and 15. Finally, the assumption groups correct is used to prove that groups
computes the same result as Equation 13 and 14 does.

The rest of this section will show, by the example of Kogge-Stone addition
algorithm, that how this general PPA applies to some specific one. The algorithm
formalized follows [20], in which the algorithm is proposed.Other implementa-
tions of PPA can be formalized and verified similarly.

1 Module Kogge_Stone <: GroupCarries.
2 Fixpoint KS_PG_rec (n m : nat) (bvPG : data2 (S n)) : (data2 (S n)) :=
3 match m with

4 | 0 => bvPG

5 | S m’ => let recur := (KS_PG_rec m’ bvPG) in
6 data2_op1 recur (shiftin_group (power2 m’) recur)
7 end.
8 Definition groups n (PG : data2 (S n)) :=
9 KS_PG_rec (S (log2 (S n))) PG.

10 Theorem groups_correct : forall n (X Y : data (S n)),
11 groups (P X Y, G X Y) = correct_groups (P X Y, G X Y).
12 End Kogge_Stone_Group_Carry.

Lines 2 to 10 describe the main function to define the Kogge-Stone imple-
mentation of the groups function. m is a simple counter to indicate how many
stages needed, which should be the logarithm of the data-width. When initial-
izing, the input bvPG stands for two vectors of the propagated and generated
carries respectively, e.g. Pi = Pi:i and Gi = Gi:i for all n ≥ i ≥ 0. At any
stage m, this function computes the group carries of maximum length 2m. For
an 8-bit Kogge-Stone adder, suppose at stage 2 (m′ = 2), all groups carries with
maximum length 4 has been computed as in line 8:

recur := ([P7:4, P6:3, P5:2, P4:1, P3:0, P2:0, P1:0, P0],
[G7:4, G6:3, G5:2, G4:1, G3:0, G2:0, G1:0, G0])

At the next stage (m = 3), as in lines 8 and 9, firstly shiftin group function
shifts both vectors in the tuple simultaneously 2m

′
times with true and false



respectively. The result is represented by recur′:

recur′ := ([P3:0, P2:0, P1:0, P0, true, true, true, true],
[G3:0, G2:0, G1:0, G0, false, false, false, false])

Secondly, date2 op1 executes the fundamental operator in Equation 16 with two
operands recur and recur′, and the result is :

([P7:0, P6:0, P5:0, P4:0, P3:0, P2:0, P1:0, P0],
[G7:0, G6:0, G5:0, G4:0, G3:0, G2:0, G1:0, G0])

In line 11, groups function specifies that the stages needed are log2 (n+ 1),
where n is the date-width.

The correctness theorem cannot be proved by induction on the data-width
as normal, because Kogge Stone implementation of groups function recurses on
the stages, not the data-width as shown in the definition of KS PG rec.

Noticing that in the theorem, the result of each side of equation is a tuple of
vectors, the equality holds iff the corresponding elements are identical pairwise.

1 Lemma data_eq_nth_eq_data2 : forall n (gx gy: (data2 (S n))),
2 (forall k, k < S n −>
3 (nth k (fst gx), nth k (snd gx)) =
4 (nth k (fst gy), nth k (snd gy))) <−>
5 gx = gy.

However, the result of KS PG rec changes with the stage m, the first thing
to prove is an invariant of m stating how this function approaches the result
of correct group function gradually with the increasing of the stages. Suppose,
without loss of generality, that

correct groups(X,Y ) := ([Pn:0, ..., P0], [Gn:0, ..., G0])
KS PG rec(m,Z) := ([Pm

n:0, ..., P
m
0 ], [Gm

n:0, ..., G
m
0 ])

for all m, Z = (X,Y ), n > 0 then for all 0 ≤ k ≤ n,

(Pm
k:0, G

m
k:0) =

{
(Pk:0, Gk:0) k < 2m

(Pk:(k+1−2m), Gk:(k+1−2m)) k ≥ 2m

With this invariant, the existence of the fixed points can be proved secondly,
and the least fixed point should be log2 (n+ 1). For all m ≥ log2 (n+ 1), k ≤
n < 2m, (Pm

k:0, G
m
k:0) = (Pm+1

k:0 , Gm+1
k:0 ) = (Pk:0, Gk:0). Function groups, which

iterates KS PG rec function log2 (n+ 1) stages, computes the same result as
function correct groups, which is the correctness theorem. All the proofs of this
theorem are carries out in Coq, although they are expressed in an intuitive way
here for better understandings of the readers.

Kogge-Stone adder can be combined by the general module of PPA and this
specific module of Kogge-Stone methods to compute all the group carries, which
not only provides the computation method but also the correctness proof.

1 Module Kogge_Stone <: GenAdder :=
2 PPAdder Kogge_Stone.



6 Conclusion and Future Work

In this work, we proposed a holistic methodology to formalize and verify primary
adders (RCA, CLA, LA and PPA) in theorem prover Coq. They are formalized
using dependent types, higher-order recursion, module systems in order to pro-
vide fidelity, scalability and modularization.

In particular, PPA is a family of adders sharing the same structure, only
differing in the methods of parallel prefix computing. We provide a novel way to
describe the general PPA, and show how to use this general module to verify a
specific PPA, exemplified by Kogge Stone adder.

Other advanced arithmetic designs can be verified reusing the formalizations
and verifications of this work in a combinational way, as we describe by the
example of carry select adders.

All the work has been carries out in Coq. The whole development contains
around 2,000 lines of Coq scripts. This number of scripts is only about one third
of [12], which is another work dedicated to verify addition designs in Coq. This
work used less scripts but verified more addition designs than [12].

This work can be continued in two directions. Advanced arithmetic designs,
such as IBM POWER6, can be cumulately verified based on these verified adders.
Since formalization in a constructive way to have a clear correspondences to
gate-level descriptions of circuits, HDL codes can be generated from the ver-
ified designs, which may provide an alternative way for designing the correct
arithmetic implementations.
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